Understanding Visual Fields

Steven Ferrucci, OD, FAAO
Chief, Optometry; Sepulveda VA
Professor; SCCO/MBKU

• WHAT
 The Visual Fields are a measure of the area you are able to perceive visual signals, when your eyes are in a stationary position and looking straight ahead

• WHY
 Measures the visual integrity between the retina and the visual cortex

• HELPS US
 Understanding of functional abilities.
 Help diagnose a vision/brain condition.
 Monitor treatment/progression of condition.

• USES:
 Glaucoma
 • Glaucoma affects peripheral vision before central vision
 • Assists in Diagnosis and Following of glaucoma
 Neurologic
 • Strokes cause characteristic visual field loss
 • Diagnose and help localize lesions
 Other
 • RP, blepharoplasty

• Historical perspective
 • Hippocrates described hemianopsia in late 5th century BC
 • Measurement of VF extent by Thomas Young in early 1800’s
 • VonGrafe provided first quantitative assessment in 1856
 • Hans Goldmann and his perimeter in the 1940’s

• Quick review
 • Normal adult dimensions
 | Dimension | Degree |
 |------------|--------|
 | Superiorly | 50-60 |
 | Inferiorly | 70-75 |
 | Nasally | 60 |
 | Temporally | 90-100 |
 • Threshold measurement is the intensity of stimulus that can be detected by the patient 50% of the time.
 • Db- the dimmer the stimulus the higher the threshold number (Db), patient is more sensitive.
 • By testing multiple locations at the threshold an isopter is formed

• Types of VF Defects:
 • Scotoma:
 • A defect surrounded by normal visual field
 • Relative: an area where dim objects cannot be seen but larger or brighter ones can
 • Absolute: nothing at all can be seen in that area
 • Generalized depression:
 • Overall VF is reduced vs. what it is expected
Types of VF Defects:
- Hemianopia: binocular field defect in each eye
- Bitemporal: the two halves lost on the outside, or the temporal side
- Homonymous hemianopia: the two halves are on the same side of the visual field, to the right or left

Getting set up:
- Consider your patient
 - Choose the appropriate test
 - Screener vs threshold test
 - Peripheral vs central
- Ensure good testing/reliability
 - Correct Rx
 - Patient limitations
- Analyze data
 - Make appropriate treatment recommendation

OPTIONS:
- Confrontation fields
 - Quick and easy screener
 - Doesn’t require equipment
 - Catches large defects

Advantages of Manual Perimetry
- Greater interaction between examiner and patient
- Not confined to VF testing algorithms
- Adaptable to patient
 - Ex: Goldman, Tangent Screen

Advantages of Automated Perimetry
- More sensitive/reproducible
- Quantitative information
- Results in a more timely manner
- Experienced perimetrist is not required
- With newer perimetric tests, early detection of glaucomatous damage is possible
 - EX: Humphrey, Octopus
- **Tangent Screen**
 - Simple and more sensitive than confrontation fields
 - Black felt screen with stitched circles 5 degrees apart
 - Tests to 30 degrees at 1 meter (3.2 feet)
 - Different color targets
 - Smaller target makes for a more sensitive test
 - Distance correction, including +1.00 for presbyopes at 1 m
 - No multifocals
 - Plot from non seeing to seeing, BS first
 - Monitor patients fixation

- **Goldman manual perimeter**
 - Easier to test large defects
 - Hemianopsias, low vision patients (ex: RP) or patients who cannot sit through a Humphrey field.
 - Calibrated bowl instrument
 - Background set at 31.5 apostilbs (in photopic range)
 - Can change size and intensity of target to plot different isopters
 - Roman numeral = size of stimulus
 - Number and letter = intensity of stimulus

- Plot the blind spot
 - Test each meridian from non seeing to seeing
 - Vertical and horizontal meridian
 - Place a dot at each meridian as soon as the patient clicks the button
 - Monitor fixation throughout
 - Form isopter
 - Evaluate
• **Humphrey Automated**
 - Light stimulus is flashed a number of static locations, if not seen intensity is increased.
 - Calculates field according to age matched norms (STATPAC)
 - Option of kinetic perimetry, social security disability or custom as well

• **FDT**
 - Tests supra threshold in 45 seconds and threshold in about 4-6 minutes.
 - Normal room lighting
 - Automatically occludes eye
 - 17 regions tested within central 20 degrees
 - High sensitivity and specificity for identifying glaucomatous defects.
 - Excellent for SCREENING

• **Octopus**
 - Standard automated, SWAP, flicker, goldmann automated or manual kinetic
 - Automated eye tracking
 - Faster threshold testing (2:30): TOP test strategy
 - Tells you when lens is too far; eliminates rim artifact
 - Also has progression analysis software
Before starting!

- Make sure date of birth entered
- Results are compared to normative data base
- Make sure correct RX is used
- Calculate trial lens
- Use set procedure
- Explain test to patient
- Get patient positioned in instrument
- Cover eye NOT being tested

Choose your test

- Ex: 24-2, 30-2, 10-2, 60-4
- SITA Standard/Fast: collects twice as much info, faster, starts testing near threshold. Time interval customized to patients responses.
- SITA SWAP: faster blue yellow threshold test for early detection of glaucoma
- Full Threshold

Visual field interpretation

- Visual fields are inherently variable
 - Consider learning effect/fatigue on psychophysical testing
 - Makes our job more difficult
 - We must look for overall trends to identify progression
 - New statistical analyses intend to help with this
• Reliable?
• Does the VF defect respect the horizontal or vertical meridian?
• Is the VF defect in one or both eyes?
• Is the VF defect in the papillomacular, arcuate or nasal nerve fiber bundle?
• If binocular, is the VF defect on the same side or the opposite side?
• If on the same side, are the VF defects carbon copies?

• Crunching numbers

• Reliability indices
 • Fixation loss- should be less than 20 %, watch patient through test, make note of good fixation on print out
 • False positive- “trigger happy” Patient pressed the button when no light was presented.
 • False negative- patient could not see a bright stimulus in a place they previously saw a dim stimulus
 • Studies: Both should be less than 33% to be reliable
 • Actually, less than 10-15%

• Sources of Error

• Poor performance
• Uncorrected Rx
• Lens rim defect
• Media opacity
• Ptosis/dermatochalasis
• Inadequate retinal adaptation

• Visual field should match clinical findings

• Color vision
• Visual Acuity
• Optic Disc Appearance

• Grey scale
 • Graphical representation of the raw data

• Total deviation
 • Raw data and graphical representation of how the patient did compared to age matched normals.
 • Zero = exact match.
 • (+) patient did better than his peers
 • (-) patient did worse than his peers.

• Pattern deviation
 • Graphical and numerical representation of field without generalized depression
 • Accentuates focal areas of damage.
 • A high number may indicate loss in discrete areas
• Glaucoma hemifield test (GHT):
 - Compares points in the upper hemifield to corresponding points on the lower hemifield with the assumption that sensitivity should be similar in both fields.

• Visual field index (VFI):
 - Global index gives you percentage of useful vision remaining.
 - Central parts of the visual field are weighted more.
 - Trend based analysis: pts age plus “velocity” of progression.

• Enhanced Guided Progression Analysis (GPA):
 - Flags statistically significant progression automatically and tracks current rate of progression through a combination of threshold and SITA strategies.
 - Prints a one page “summary” of progression.
 - Projects current rate of projection up to 5 years.

• VF Defects in Glaucoma:
 - Arcuate defects, bjerrum scotoma.
 - Nasal Step.
 - Paracentral scotoma.
 - Temporal wedge.
 - Blind spot enlargement.

• Media opacities:
 - corneal scars, cataracts, vitreous hemorrhage

• Retina/ONH level:
 - RD, AMD, glaucoma

• Brain:
 - Early visual pathway: Optic nerve, chiasm, optic tracts.
 - Late in the visual pathway: LGN, Optic radiations, visual cortex.
Look for patterns!
- Cluster of 3 points
- Abnormal Glaucoma Hemifield Test
- Pattern Standard Deviation <5%
- Repeatable!!
- Correlate with clinical findings!

• VF Defects in Glaucoma:
 - Progression is indication that treatment is not sufficient
 - Correlate with clinical findings!
 - Performed at least once a year or more depending upon severity of disease

• Neurologic Field Loss:
 - Tends to be bilateral
 - Tends to be fairly symmetric
 - Symmetry of field loss increases through the visual pathway
 - VF loss can predict location based on anatomy
 - Lesion on contralateral side
• Others:
 • Retinitis Pigmentosa
 • Loss of peripheral vision
 • “tunnel vision”
 • Dermatochalasis
 • Superior defect which improves after surgical intervention
 • AMD
 • Central scotoma

• SUMMARY:
 • VF is useful clinical tool
 • Glaucoma, Neuro, Others
 • Very variable
 • Patient preparation is key!!
Thank You!!!