Overview

- Femtosecond Laser Review
- Femtosecond flaps for LASIK
- Femtosecond laser uses in keratoconus
- Keratectomy review
- Intracapsular femtosecond cataract surgery
- Intraocular lens-related keratoplasty
- Femtosecond laser-assisted cataract surgery
- New technology with femtosecond lasers
- Femtosecond laser technology
- Femtosecond Flap Advantages
- Main Surgeon Advantages in Context of Liability
- Reduced Dryness
- Reduced trauma to corneal microvilli
- Better tear film adherence
- Better visual acuity
- More shallow flaps and consistent small diameter
- Reduced corneal nerve damage (depth and diameter) and less induced dryness
- Improved apposition of severed nerve fibers

Photodisruption with a Femtosecond Laser

- Plasma Formation
- Acoustic Shockwave
- Cavitation Bubble Formation and Collapse
- Cut Region Remains

Adapted from Pepose et al, Cataract and Refractive Surgery Today, October 2008

Femtosecond Lasers in Today’s Ophthalmic Surgery

Optometric Council on Refractive Technology (OCRT)

J. Christopher Freeman, OD, FAAO
William Tullo, OD, FAAO (Dipl.)

Oklahoma City, OK
Princeton, NJ

Financial Disclosures

- J. Christopher Freeman, OD, FAAO, Dipl.
 - Full-time employee, iSight Vision
 - President, OCRT
 - Speaker Bureau, Allergan

- William Tullo, OD, FAAO (Dipl.)
 - Full-time employee, TLC Vision
 - Membership Chair, Executive Committee Member, OCRT

How fast is a femtosecond?

How far does light travel?

- 1 second = 1,000,000,000,000,000 femtoseconds
- 1 second = 300,000,000 meters
- 1 femtosecond = 300 nanometers
- 1 picosecond = 0.3 millimeters

Photodisruption with a Femtosecond Laser

- Laser focused at a specific depth in cornea
- Creates "cavitation" bubbles of CO₂ and H₂O
- Bubbles merge together with tissue bridges/adhesions
- Bubbles can be focused in a plane or on top of each other
 - Horizontal, vertical, diagonal, round, curved
 - Any X,Y,Z axis configuration

Femtosecond Flap Advantages

- Reliably Thin Flaps
- Tighter standard deviation of desired vs. achieved flap thickness
- Flap Stability
- Reduced risk for flap dislocation (liability)
- Better visual acuity
- Reduced risk for flap dislocations
- Reduced Dryness
- Improved biomechanical advantage
- Better lens contrast sensitivity (night vision)
- Surgery rates
- Laser-induced higher order aberrations
- 82% of LASIK flaps in 2012 were femtosecond flaps

Main Surgeon Advantages in Context of Liability

- Reduced Dryness
- Patient complaints
- FDA LASIK hearings
- Reduced HOAs (compared to blade LASIK) also discussed in FDA LASIK hearings
- Increased biomechanical advantage
- Ectasia risk

Reduced Dryness

- Reduced suction pressure at limbus to reduce goblet cell damage
- Less effect on mucin tear layer
- Reduced trauma to corneal microvilli
- Better tear film adherence
- More shallow flaps and consistent small diameter
- Reduced corneal nerve damage (depth and diameter) and less induced dryness
- Improved apposition of severed nerve fibers

- Schallhorn, S. et al, Ophthalmology, April 2009

+ Biomechanics (safety/reduced risk of ectasia)

- Why Stay Near the Surface?
 - Anterior 40% of Cornea has strongest cohesive tensile strength
 - Posterior 60% of Cornea is 50% weaker than the anterior 40%
 - Increasing age is associated with increased corneal cohesive tensile strength
 - The thinner the flap, the more of the anterior 40% of cornea remains after treatment
 - Improved biomechanical stability, faster adhesion & wound healing
 - John Marshall, PhD

- Thinner Flap
 - Twice as strong as posterior 60%

- Thicker Flap
 - More residual tissue

- Improved biomechanical stability, faster adhesion & wound healing
 - John Marshall, PhD

+ Summary

What to tell Patients?

- Less flap making risk
- Thinner flaps
- Less dryness
- More residual tissue
- More 20/20's & better low contrast [night] vision according to US Navy studies
 - John Marshall, PhD

- Thinner flap with equal ablation depth means MORE of the strongest part (front 40%) of cornea left after treatment

- Femtosecond laser LASIK flap creation

- Femtosecond Laser Keratoconus surgical applications

- Intacs with femtosecond laser created channels

- Keratoconus Review

- Prevalence:
 - 1/2000 - varies

- Genetics
 - 15-70 times more likely to have KC if someone in immediate family has it compared to general population
 - Connection between KC and defects on chromosomes 21, 17, 13
 - Likely multiple genes involved given multiple presentations

- Etiology
 - Keratoconus likely 'causes accelerated keratocyte apoptosis
 - Minor traumas cause epithelial cells to release cytokines leading to apoptosis
 - Often first stromal response to epithelial injury
 - Susceptible corneas may lack ability to process reactive oxygen species due to lack of necessary protective enzymes (e.g., ALDH3 and superoxide dismutase).
Keratoconus Review

- Multiple Presentations
 - May be unilateral (75%) or bilateral
 - May affect the central or mid-peripheral cornea
 - May be mild or severe
 - May start in childhood or later in life
 - May occur in more than one family member or in one individual only

- Hallmarks
 - A decline in visual acuity (usually greater in one eye than the other)
 - A distorted retinoscopy reflex—-a.k.a. “scissors” motion
 - Distortion of or an inability to superimpose the bottom right keratometry cone
 - Frequent changes in spectacle cylinder power and axis.
 - Increased myopia
 - Squinting—pinhole effect
 - Halos/starbursts around light during nighttime viewing
 - Associated astigmatic disease

Femtosecond Keratoconus Surgery: Intacs

- Used to reduce corneal irregularity
 - Some flattening
 - Moves cone more central
 - Provides intrastromal structure to cornea

Intacs Background

- Developed CornealScope in late 1960s—led to today’s topography
- One of the early medical champions of contact lenses in the U.S.
- 1978—Dr. Reynolds’ first conception of Intracorneal Rings

Intacs: Background

- 1980—Kera Associates Formed
 - John C. Petricciani, marketing executive of Bailey-Fairfax
 - Joseph Z. Kreuzvski, Ph.D., ophthalmic pharmaceutical researcher
- 1985—First preclinical studies of ring performed by Dr. Schanzlin and Dr. Flemming
KeraVision Milestones

- 1984 - Intrastromal Corneal Ring
- 1986 - KeraVision Inc. established
- 1988 - Preclinical studies in preparation for FDA
- 1991 - Phase I - First human clinical trials (Brazil, U.S.)
- 1993 - Phase II - 360° ICR myopia trial initiated (U.S.)
- 1994 - Preliminary astigmatism study (Brazil)
- 1994 - Death of Gene Reynolds, OD
- 1997 - Phase III - ICRS
- 1997 - Preliminary Hyperopia studies in Mexico initiated
- 1999 - FDA Approval of Intacs

Adjustable
Ring

Intrastromal
Corneal
Ring

Gapped
Ring

Gapped
Ring

Segments

360 Ring

Intrastromal
Corneal
Ring

Segments
The INTACS Effect

Arc Shortening

Femtosecond laser-enabled Keratoplasty
a.k.a. Intralase-enabled keratoplasty (IEK)

Intacs for keratoconus

Intralase-enabled keratoplasty (Corneal Transplant)

Intacs with femtosecond laser created channels

Femtosecond lasers for KC
Intralase-enabled keratoplasty (IEK)

- Better graft-host fit
- Multiple healing contact interfaces
- Reduced suture tension
- No significant endothelial cell loss
- Faster vision rehabilitation
- Earlier suture removal
+ Femtosecond laser-enabled keratoplasty

+ Astigmatism

Typical 1 yr post-op PKP
standard spheric cut = 6 diopters of astigmatism

Intralase-enabled Keratoplasty
at 3 months post-op = ½ diopter of astigmatism

+ Femtosecond laser-assisted cataract surgery

- Femtosecond Technology
- Same technology as laser flaps for LASIK
- Now approved and will change the future of CATARACT SURGERY
- Incisions
 - Anterior Capsulorhexis
 - Lens Fragmentation
- Relaxing Incisions – UFL’s

+ Advantages of femtosecond laser-assisted cataract surgery

- SAFETY
 - Incisions – perfect wounds, less chance for endophthalmitis
 - Lens Fragmentation – softer nucleus, less time and energy
 - 63% decrease in average phaco time
 - 57% decrease in effective phaco power
- ACCURACY
 - Capsulotomy – precision size & centration, critical for Refractive IOLs
 - Manual: 329 microns; Laser: 27 microns
- OUTCOMES
 - Relaxing Incisions – for astigmatism, with newer IOL technology goal is within 0.50D of emmetropia

+ Intralase-enabled keratoplasty
 - Rapid Rehab

1 week post-op
3 months post-op

+ Femtosecond laser-assisted cataract surgery

- Capsulorhexis Precision
Traditional manual cataract surgery

Femtosecond laser-assisted cataract surgery outcomes

Femtosecond laser arcuate incisions

Femtosecond laser-assisted cataract surgery Capsulorhexis

New Technology

Femtosecond uses:
- Liquefy, soften or “chop” the lens
- Create capsulotomy
- Create all required surgical incisions
- Provide a refractive solution to pre-existing astigmatism by creating relaxing incisions
- Possibly do all above with better accuracy and precision than our current manual techniques?

Femtosecond arcuate incisions

Capsulorhexis Precision

Femtosecond laser-assisted cataract surgery

Femtosecond arcuate incisions

Astigmatic Keratotomy
Femtosecond arcuate incisions

Femtosecond laser pockets for Kamra corneal inlay
- Increased depth of field with minimal effect on distance vision

Femtosecond presbyopia surgery Intracor
- Concentric rings allow for aspheric central corneal steepening
- Similar to collagen shrinkage procedures
- LTK
- CK

Femtosecond laser pockets for Kamra corneal inlay
- Kamra corneal inlay
- Pinhole effect
- Presbyopia
- 5 microns thick
- 3.8mm in diameter
- 1.6mm central aperture

Femtosecond laser surgery for presbyopia Intracor

Femtosecond laser pocket for Kamra inlay
Femtosecond laser

Small Incision Lamellar Extraction

a.k.a. SMILE, ReLEx, FLEX

SMILE, ReLEx, FLEX

- Lenticule is removed to allow corneal flattening

Summary

- Femtosecond flaps for LASIK
- Femtosecond laser uses in keratoconus
- Keratoconus review
- Insert for KC with femtosecond channels
- Intracorneal inkeraptomy
- Femtosecond laser-assisted cataract surgery
- New technology with femtosecond lasers
- Intracor
- SMILE, ReLEx, FLEX
- Kamra

Thank You!