Anterior Segment Laser Procedures

R. Michelle Welch, OD
Aaron McNulty, OD

Nd: YAG Laser
Laser Type: A Solid State Laser
- Nd: YAG Laser
- Neodymium: Yttrium aluminum garnet Laser
- The lasing substance is a small amount of neodymium which is in the yttrium aluminum garnet crystal
- 1064 nm Infrared wavelength

Argon or Frequency Doubled YAG
- Argon or Solid state laser
- Around 532 green or blue-green wavelengths
- Photocoagulation

SLT Laser
- Frequency Doubled YAG
- 3 Nanosecond duration

Laser Safety Considerations
- Know the Nominal Hazard Zone for each laser
- Know which type glasses and when to wear

Laser Light Characteristics
- Single Wavelength
- Low divergence
- Highly energized
- Highly focusable
- Highly controllable

Laser Variables that Influence Interactions
- Wavelength
 - Different tissues and pigments absorb different wavelengths of light
 - Excimer is 193 nm, cornea absorbs well, Ultraviolet
 - Longer wavelengths penetrate deeper
 - Xanthophyll near fovea - best to use longer wavelength, or argon green - not blue

Laser Tissue Interactions
R. Michelle Welch, O.D.
NSU College of Optometry

Laser Variables that Influence Interactions
- Wavelength
 - High powered infrared waves (Nd:Yag) are effective in photodisruption
 - Used for membrane cleaving
Laser Variables that Influence Interactions

- **Spot size**
 - Nd: Yag has fixed spot size
 - Others have adjustable spot size
 - Can influence spot size by using contact lens
 - Increases the cone angle to "tighten" the spot size
 - Smaller spot size has a greater energy density

Laser Variables That Affect Interactions

- **Energy Delivered**
 - Risk of complications increase in proportion to cumulative energy delivered into the eye
 - Best rule of thumb: Use the lowest energy setting, the least number of shots, and the lowest duration possible to accomplish the desired affect

Laser Variables That Affect Interactions

- **Spot size**
 - Laser lens increases the cone angle to "tighten" the spot size
 - Smaller spot size has a greater energy density
 - So the desired level of impact would require less power when the spot is smaller
 - Decreasing spot size without decreasing power will lead to overtreatment

Laser Variables That Affect Interactions

- **Energy Delivered**
 - Most photocoagulation laser systems have power control setting
 - Most Photodisruptive lasers have energy setting since duration is fixed
 - Power is energy delivered per unit time
 - Low energy produce acoustic "pops"; higher energy produces "thunderclaps"

Laser Variables That Affect Interactions

- **Mode of energy delivery**
 - Continuous wave modes
 - Result in constant energy emission with ongoing laser action
 - Used in procedures requiring longer duration burns

Laser Variables That Affect Interactions

- **Transparency**
 - Biologic tissue are opaque to 300nm and shorter wavelengths
 - There the energy passes through less and is absorbed more by the cornea and lens
 - Eximer is 193 nm (Ultraviolet)
 - Healthy ocular media pass 400 nm blue through 700 nm red effectively

Laser Variables That Affect Interactions

- **In thermal (photocoagulation systems), the duration of the burn is variable**
 - Brief burns deliver a concentrated bolus of light in a powerful pulse
 - Longer burns at same power result in less concentrated stream of photons onto the tissue
Tissue Variables That Affect Interactions

- **Transparency**
 - Short Infrared is transmitted through the ocular media
 - As IR wavelength lengthens the lens and cornea absorb more energy (glassblower's cataract)
 - Lens sclerosis and brunescence reduce the transmission of laser light directed toward the retina

- **Pigmentation**
 - Absorbs blue and green wavelengths very effectively
 - Yellows and oranges are less efficiently absorbed
 - Reds and infrareds are the least absorbed and are therefore preferred for photocoagulating targets deep to regions of hemorrhage

- **Water content**
 - IR wavelengths (>1300nm) are absorbed by water and converted into heat
 - Actual bond cleaving does not take place
 - Water is turned to steam and propels microscopic tissue bits into environment
 - Is photovaporization, rather than photoablative

- **Pigmentation - Melanin**
 - Absorbs across the entire visible spectrum
 - Absorbs infrared less effectively
 - The less efficient the absorption of a wavelength, the deeper its penetration into the tissue
 - Less efficient absorption also means more powerful of longer duration burns are required

- **Pigmentation - Hemoglobin**
 - Absorbs blue and green wavelengths very effectively
 - Yellows and oranges are less efficiently absorbed
 - Reds and infrareds are the least absorbed and are therefore preferred for photocoagulating targets deep to regions of hemorrhage

- **Pigmentation - Xanthophyll**
 - Brownish-yellow pigment concentrated within the plexiform layers of the retina at the fovea.
 - Absorbs blue wavelengths very well
 - Does not absorb wavelengths as they are lengthened from green to red and infrared
 - When treating lesions deep to the fovea, a red or IR wavelength should be selected (CNVM)

- **Photocoagulation**
 - Is a pigment dependent interaction
 - Melanin is the primary ocular pigment
 - Hemoglobin also can be targeted to coagulate vascular lesions of fundus, iris, and angle
 - Light energy is converted into heat
 - When 10 – 20 degree C increase, photoacogulation occurs

- **Specific Laser-Tissue Interactions**
 - Denaturing of proteins, blood is coagulated and moderate inflammation is induced
 - The inflammatory response, if controlled, can be very beneficial, and may serve to create desired scarring and adhesions
 - Tissue atrophy arises surrounding each spot, when controlled this can be helpful in reducing the relative oxygen demand of poorly perfused ischemic tissue

- **Specific Laser-Tissue Interactions**
 - Also involves the warming of collagen
 - Causes the collagen to contract, thus altering structural relationships
 - Helpful in changing the micromontomy within the trabecular meshwork during trabeculoplasty
 - Also desirable when attempting to draw the peripheral iris out and away from the angle
 - Not desirable when treating pre-retinal membranes, can produce traction on the retina
 - Focal photocoagulation is blood coagulation and collagen shrinkage of vessel wall leading to occlusion
Specific Laser-Tissue Interactions

- Photovaporization
 - Thermal laser procedure
 - Depends upon absorption of light by pigment
 - Melanin the primary pigment involved
 - Tissues warmed by 65 - 100 degree C
 - Reduces tissue to CO$_2$ and H$_2$O
 - Vapor is created

- Photodisruption
 - Involves optical breakdown - light energy causes tissue to be reduced to plasma
 - Produces hydrodynamic waves and acoustic pulses whose majority of energy is back toward the physician
 - When attempting to photodisrupt an opacified membrane behind an IOL, the focus point should be just deep the capsule
 - Does not coagulate blood vessels, so could lead to bleeding if a vessel knicked

- Photoablative decomposition
 - Is NOT pigment dependant
 - Is true non-thermal process
 - Involves cleavage of molecular bonds
 - Excimer removes .25um per pulse (Human hair around 50 microns)

SLT PROCEDURE

SLT Basics
- Uses Frequency Doubled, Q-Switched ND:YAG
- Wavelength output is 532 nm green
- Burn time is 3 ns – why?
- Spot size is 400 micron – easier to focus than ALT

SLT Mechanism
- Thermal Relaxation Time
 - Amount of time it takes melanin to convert light energy to heat
 - 1 microsecond
- SLT pulse duration is 3 nanoseconds
SLT Mechanism
- Targets intracellular melanin
- Does not affect adjacent non-melanin containing cells
- Target cells activate cytokines which in turn activate macrophages
- Macrophages clean area decreasing outflow resistance
- No endothelial cell membrane formed as can happen with ALT

SLT Contraindications
- Not for angle closure
- Caution in cases where could be trabeculitis
- Neovascular glaucoma
- Hazy media
- Relative Contraindications
 - Angle recession
 - Under age 40

SLT Potentially Repeatable
- 70-80% effective at 1 yr
- 40-50% at 5 yrs
- 5-30% at 10 yrs
- Expected IOP reduction: 20-30%

SLT Indications
- Various approaches
- When patient ready for second medication
- First line treatment in other countries
 - Non-compliance
 - Cost of meds
- SLT/Med Study
- POAG, NTG, PDG, PXE

Pre-Op
- Basic exam components
 - VA, IOP, etc.
- Gonioscopy
 - Assess angle structure
 - Assess pigmentation
- 1gt Iopidine or Alphagan
- Pilo 1% if need to pull iris out of angle to better visualize TM for treatment

Latina SLT Gonio Lens
- Designed specifically for Selective Laser Trabeculoplasty. 1.0x magnification maintains laser spot size and 1 to 1 laser energy delivery. Tilted anterior lens surface corrects astigmatism to maintain circular laser beam profile and give sharp images for examination. Suitable for standard laser trabeculoplasty.

Ritch Trabeculoplasty Lens
- Designed with two 59° degree and two 64° mirrors. A 1.4x magnifying button is placed over each of the 59° and 64° mirrors. The magnifying button reduces the laser spot size by 30% and increases the laser power by 2x.
Procedure Technique
- Insert gonio lens (cushioning solution)
- Visualize angle
- Establish a system when performing these procedures and always do it the same (i.e., start at 6 and rotate clockwise)
- Before rotating lens, identify a landmark

Procedure Technique
- Place approximately 100 treatment spots per 360°
- Treatment spots should be right next to each other
- Most people are currently treating 360° of one eye for first procedure
 - 180° considered to be "partial" tx
 - 180° + 180° = "complete" tx
 - 360° + 180° = "re-treatment"

Post-Op
- 6 – 8 week post-op visit to evaluate effect in that eye, if good, treat other eye
 - Therapeutically could see some effect in nontreated fellow eye due to macrophages moving systemically
 - If good effect observed can then consider dropping a medication, but get proof SLT is effective first – don’t need to "wash out meds" before SLT

Procedure Technique
- Want to paint entire meshwork with the treatment, so put HeNe in that area
- Focus not as critical as with the ALT
- Spot size is 400 micron

Procedure Technique
- If patient had PDS – you may want to only treat 180° of one eye initially
 - Have seen cases of IOP increase in PDS patients due to excess pigment – extra inflammatory response
 - Some are treating only 180° then wait for to see what response is obtained
 - Rule of thumb of more pigment use less energy still applies with SLT

Post-Op
- Check IOP 30 – 45 minutes after procedure
- If any increase second drop of Iopidine or Alphagan
 - Acular/Voltaren qid x four – seven days – some are giving Rx but telling patient not to fill/use unless intense pain experienced
 - RTC one week – some are not having patient return at one week

Complications
- IOP spike
 - Generally 24 hrs or less
 - 5-25% of patients
- Mild Inflammatory response
 - 50% or more
 - Should be quiet by 1 week
Issues
- Treatment after failed trabeculectomy
- Treatment after PI – only do 180°
- Treatment for those having IOP increase post kenalog injection
- When not to perform SLT?

Posterior Capsular Opacification
- YAG Capsulotomy
 - The lens capsular bag has an anterior and posterior surface.
 - A hole is made in the anterior surface through which the natural lens is removed and IOL is inserted.
 - A PCD is the formation of a membrane on the posterior surface of the capsular bag following extracapsular cataract extraction.
 - Also known as a secondary cataract

Prevention and reduction
- Intraoperatively: Primary capsulotomy
 - A hole is made in the posterior capsule during the cataract extraction
 - Not considered the standard of care
 - Studies show the risk of retinal breaks, CME, and vitreous prolapse increase with primary capsulotomies

Posterior Capsular Opacification
- Etiology:
 - Natural lens cells remain in the capsule post lens extraction
 - Anterior and Peripheral natural lens epithelium migrate onto the posterior capsule and continue to proliferate and accumulate forming Elschnig’s Pearls
 - Metaplasia of lens epithelium cells into myofibroblasts which cause fibrosis upon capsular contracture.
 - Elaboration of a basement membrane and collagen synthesis leading to whitish fibrotic opacification

Incidence:
- Is most common complication post ECCE (extracapsular cataract extraction)
- Incidence ranges from 40 - 50% post surgical.
- PCD’s can form days to years post surgical
- When < 40 years old the incidence of development increases

Prevention and reduction
- Intraoperatively: Posterior capsular polishing
 - The posterior capsule is cleaned with a polisher before the IOL is inserted
 - Studies have shown that there is no statistically significant decrease in PCD formation with capsular polishing

IOL Selection and Fixation
- PMMA vs. silicone vs. acrylic
- Angulated haptics
- In the bag vs. Sulcus fixation
Patient Symptoms

- Blurred Vision
- A haze or cloud over the vision
- Loss of acuity
- Decreased contrast sensitivity
- Glare at night
- Halos at night
- Double Vision
- Asthenopia

Evaluating the Patient

- Subjective
 - Best Visual Acuity
 - Contrast Sensitivity
 - Glare acuity
 - PAM
- Objective
 - Slit lamp exam
 - Dilated Retinal Exam

Patient Education

- Auditory and Visual Expectations
 - White and red flashes of light
 - Sparks of light
 - "Snap" and "clap" of laser
- Length of procedure
- Importance of head position
- Risks and possible complications
- Contact lens insertion
- One eye at a time – 1 week apart
- Presence of floaters initially until tissue settles

Indications for Treatment

- When acuity becomes compromised to the point that a patient’s activities are limited.
- Variables to consider include:
 - Patient’s Complaint
 - Visual Acuity
 - Contrast Sensitivity
 - Glare testing
 - Ocular health (corneal & retinal)
 - Medicare “Recommendations”

Capsulotomy Contraindications

- Corneal Opacities – rendering it difficult to see through
- Corneal scars
- Corneal edema
- Corneal surface irregularities
- Intraocular inflammation
- CME
- A “hot eye” – red eye
- Pt unable to hold still or fixate

YAG Capsulotomy

Using the Nd: YAG Laser, the lowest energy level to achieve tissue disruption and least number of shots are used to create a hole in the posterior capsular opacification through which better acuity can be achieved.

Preparation

- Comprehensive Exam
- Dilation (same pupil dilation first)
- Topical 1% Iopidine 1 hour prior to treatment
- History and Physical Info
 - Allergies
 - Medications
 - Systemic Disease
 - Blood Pressure
 - Temp
- Consent form – explain complications
- Contact lens – + or - need?
- Topical anesthetic
 - Topical 1% tropicamide

YAG Cap Techniques

- Number of shots
- Record in chart
 - Number of shots
- Energy used
 - Total energy in eye
 - Protective Glasses NOT needed
- Contact lens (+/-)

Rule of Thumb: Use the lowest energy setting, least number of shots & lowest duration (fixed for YAG) possible to get the job done!
Contact Lens
- Advantages
 - Stabilizes eye
 - Lid control
 - Increases cone angle
 - Promotes target
 - Stable pupillary image
 - Does not alter the λ of light
- Disadvantages
 - Complicates the procedure
 - Slows the procedure
 - Reflections
 - Bubbles

YAG Cap Techniques
- Focus Helix beam
- Push in towards the retina, position the beams behind the posterior capsule

Capsulotomy Complications
- IOL Insults ("Pits")
 - Visual significance?
 - Laser focused too anteriorly
 - Refocus posteriorly or increase offset
- IOL decentration/subluxation
 - Rare
 - Greater risk if capsulotomy very large

YAG Cap Techniques
- Initial shot (central pilot mark)
 - Cruciate pattern – most common & effective.
 - Start at center, move along the horizontal then downwards
- Other Patterns
 - Homogeneous
 - Circular

Capsulotomy Complications
- The most common complications are general to all anterior segment laser procedures
- Specific to Yag Cap
 - IOL insults
 - IOL decentration
 - Vitreous Prolapse

Capsulotomy Complications
- Vitreous Prolapse
 - Large capsulotomy with large anterior capsulorrhexis can create potential pathway for vitreous into anterior chamber
Post-Operative Management
- Patient education
- Topical steroid – Pred Forte QID x 1 week
- Topical IOP control medication
 - 2% brimonidine, recheck IOP 1 hr post-op
- Continue all pressure lowering medications
- Common RTC 1 week for follow up
 * Acuity & IOP check, DFE

Angle Closure Pathophysiology
- Anatomic Disorder Characterized by Peripheral Iris/TM apposition
- 4 Basic Forms: from most common/least complicated to least common/most complicated
 - Pupillary block (iris)
 - Plateau iris (CB)
 - Phacomorphic Glaucoma (lens)
 - Malignant Glaucoma (vitreous)

Yag Cap & Accommodating IOLs
- Small and central
- Circular; avoid acute angles at edges

Peripheral Iridotomy

PI Indications
- Primary Angle Closure (Pupillary Block)
 - Acute or intermittent
 - Prophylastic
 - Narrow angle or Previous attack in other eye
- Plateau Iris Syndrome/Configuration
- Secondary Pupillary Block
 - Phacomorphic, malignant glaucomas
- Pigmentary Glaucoma
- Nanophthalmos

PI Contraindications
- Corneal non-transparency
- Iris in contact with endothelium
- Angle Closure Secondary to Neovascular or inflammatory glaucomas
- Intraocular Inflammation
- Macular disease?
PI Alternatives
- Surgical iridectomy
 - Equal results to laser PI
 - Increased risk
 - Intracocular heme
 - Infection
 - Malignant glaucoma
- If concurrent surgery not occurring, choose laser PI

PI Procedure
- Insert contact lens using cushioning agent
- Deliver energy to create patent PI of approximately 1mm size. Different approaches... may want larger at times.
- Pigment plume = patency
- 100-150 mJ max/session
- Remove lens
- 1% apraclonidine
- IDP/post-op vitals at 1 hour

PI Laser Selection
- Nd:YAG
 - Penetration rate 95%
 - Photodisruption (non-pigment dependant)
 - Initial energy 1.5 to 2.0 mJ
 - Least energy with successful interaction max of ~6mJ
 - Focus carefully (remember laser offset)
 - Increased risk of bleeding
 - More likely to be hindered by debris
- Argon
 - 80% success (more difficult to penetrate thick iris)
 - Pigment dependant
 - Spot size 50um, Duration 0.1sec, 600-1200mW
 - Less bleeding and debris issues
 - Requires more shots than YAG
 - Argon pre-treat before YAG had advantages

PI Complications
- Non-perforation – most common
 - Transient blur
 - Uveitis and A/C debris
 - JOP Spike (10-50%) (10-18mmHg)
 - Hyphema – from 35 to 50% of cases
 - Synchiae formation
 - Inflammatory glaucoma
 - Others: Monocular diplopia, Peaked pupil, Corneal/lens/retina damage, RD, CME

PI Techniques
- Direct
- Linear incision
- Humping
- Drum
Pi Pearls
- Penetrate iris is first order of business
- Careful selection of treatment location
- Use Contact Lens
- Tilt lens to clear reflections and achieve tight focus of laser aiming beam
- Titrate total energy depending on history (uveitis, corneal health, glaucoma, CME)
- Avoid treating loose strands
- Assessing patency
 - Retroillumination not sufficient

Common Complications
- With minimized risks, side-effects:
 - Mild
 - Short duration
 - Insignificant consequence
 - Ocular health and visual function sound
 - Refractive status unchanged
 - Invasive surgical risk is avoided

Pi Success
- Patent PI at 6 weeks
 - Remember greater success with Yag than with Argon
- Deepening of anterior chamber
- IOP control
- No persistent complications

Common Complications
- All laser procedures have risk of severe complications.
 - Minimize risk:
 - Patient education
 - signed informed consent
 - Proper pre-op, surgical and post-op techniques
 - Appropriate follow-up appointments

Risk Management
- With each patient and with each procedure:
 - Know what can go wrong,
 - Know when to look for it,
 - Know what to do when it occurs.

- Must know potential complications with each laser procedure
- Must know patient specific characteristics that put that patient at increased risk
 - Diabetes mellitus
 - High myopia
 - Retinal health
 - Glaucoma
 - Ocular hypertension
Risk Management

Knowing the patient and the laser procedure will allow
- Accurate diagnosis of complication
- Immediate treatment
- Appropriate referral when indicated
- Follow high risk patients more closely

General Complications

ALL anterior segment laser procedures are associated with transient:
- IOP elevations
 - ~50% are statistically significant
- Inflammation
 - ~50% post-procedural cell and flare
 - Iritis, iridocyclitis, uveitis, CME

Follow high risk patients more closely

Complications increase with increased cumulative amounts of laser energy
- Inflammatory responses
 - Iritis, cycitis, iridocyclitis
 - Synechiae, posterior and peripheral anterior
 - Cystoid macular edema
- Elevated IOP

Elevated IOP
- Underlying inflammatory mechanism
- Mediators alter TM and aqueous dynamics
- "Spike" 1-3 hrs following procedure
 - 2 to 10 mmHg or higher
 - "Spike" dissipates in 24-48 hrs
- POAG is pre-existing risk factor
- Existing pressure induced ONH damage
- Pre- and post-treat with aqueous suppressors
 - Apraclonidine or Brimonidine
 - Beta-blockers
 - Carbonic anhydrase inhibitors (consider)
 - New glaucoma meds

Use minimum amount of energy required to accomplish procedure
BUT, use power and shots necessary to accomplish objective

Inflammation - iritis
- Iris intensity directly associated with total cumulative energy delivered to eye
- Increased inflammation increases risk of inflammatory adhesions and permanent structural damage

Inflammation - uveitis
- IF > 10 cells/ SLE view or aqueous flare/haze, then initiate treatment
- i.g 0.4ml then taper when controlled
 - Topical steroids: prednisolone acetate, fluoromethalone acetate
 - Topical NSAIDs: diclofenac sodium
General Complications

Inflammation - cystoid macular edema
- Inflammatory mediators circulate posteriorly through the vitreous affecting the parafoveal vascular network
- Mechanical irritation from acoustic waves
- Blurred vision occurs days to weeks after procedure

Identification with stereo-biomicroscopy
Diagnosis confirmed with fluorescein angiography or OCT
Manage with topical and systemic anti-inflammatories
Consider oral CAI

Procedure Billing

- 65855 – SLT/ALT code
 - 10 day global period
 - Oklahoma allowable is $308.98
- 66761 – PI code
 - 90 day global period
 - Oklahoma allowable is $295.50
- 66821 – YAG Cap code
 - 90 day global period
 - Oklahoma allowable is $295.53

Charting Data

- Items to be recorded in the chart:
 - Enter the total energy and shot data
 - Use of the signed informed consent form
 - Information used to inform/educate the patient if other than from consent form
 - Education on possible emergency complications and follow-up care procedures